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SUMMARY 

A nonlinear theory for sound propagation in variable area 
ducts carrying a nearly sonic flow is presented. Linear acoustic 
theory is shown to be singular and the detailed nature of the 
singularity is used to develop the correct nonlinear theory. 
The theory is based on a quasi-one dimensional model. It is 
derived by the method of matched asymptotic expansions. 

In a nearly choked flow the theory indicates the following 
processes to be acting: A transonic trapping Of upstream 
propagating sound causing an intensification of this sound in 
the throat region of the duct; generation of superharmonics and 
an acoustic streaming effect; development of shocks in the 
acoustic quantities near the throat. 

Several specific problems are solved analytically and 
numerical parameter studies are carried out. Results indicate 
that appreciable acoustic power is shifted to higher harmonics 
as shocked conditions are approached. The effect of the throat 
Mach number on the attenuation ofupstream propagating sound 
excited by a fixed source is also determined. 



I. INTRODUCTION 

The acoustic behavior of variable area ducts has recently 
been the subject of much attention in connection with sonic 
engine inlets. Observations of a correlation between axial Mach 
number and attenuation of sound radiated upstream from such 
inlets has led to a realization that nearly choked inlets can 
be effective in suppressing upstream propagating sound Ref. 

l- 3. However until recently, Ref. 4,5 , there has been no 
parallel theoretical study to explain the physical processes 
that are responsible for this attenuation. In Refs. 4.5 a 
new nonlinear theory describing sound propagation in ducts 
having a near sonic throat section has been derived and some 
numerical results given. The present report will give a detailed 
derivation of the nonlinear theory and present analytical and 
numerical studies to illustrate the predictions of the theory. 

The theory provides a physical and quantitative understanding 
of the propagation process in the throat region. The nonlinear 
interaction between the sound field and the basic flow in the duct 
is shown to give rise to: 

(1) An intensification of the upstream propagating sound 
in the throat region due to a transonic type trapping; 

(2) The generation of higher harmonics of the fundamental 
(source) frequency; 

(3) An acoustic streaming effect: 
(4) The development of shock waves in the perturbation 

quantities in general. 
A condition on the source strength and frequency! and the 

throat Mach number which determines whether a shock will occur 
has been derived and numerical results have been obtained which 
illustrate the development of such "acoustic" shocks. All 
numerical results presented in this report are for shock-free 
solutions. These results show that a large fraction of the 
acoustic power transmitted through the duct can be shifted into 
the superharmonics even in the absence of shock formation. The 
attenuation for upstream transmitted acoustic power as a function 
of the throat Mach number for a fixed source strength is also 
studied. The nonlinear theory predicts that the acoustic power 
should be of the order of E 4 where E is the deviation of the 
throat Mach number from unity while a naive linear theory predicts 

3 an E dependence. 
The nonlinear theory is based on a quasi-one dimensional 

model which yields results of practical interest and provides 
basic understanding of the physical phenomena involved while 
remaining relatively simple to treat analytically and numerically. 
The theory is derived by observing that linearized acoustic 
theory fails to descirbe propagation of sound in ducts containing 
a near sonic throat section; the failure being manifested in 
singular behavior (infinite amplitudes) of the acoustic quantities 
in the throat region. A discussion of the failure of linear 
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theory is presented in Section IIB. A more complete treatment 
is given in Ref. 6. In Section IIIA the localized nature of 
the singularity is exploited in deriving the correct nonlinear 
acoustic theory by use of the method of matched asymptotic 
expansions. The theory is applied to yield numerical results 
for several cases of sound propagation from an acoustic source. 
located at and upstream or downstream of a near sonic throat. 
These results are discussed in Section IIIE. 

The qualitative basis of the theory is relatively easily 
understood in terms of the Riemann invariants of the acoustic 
field. If P(x,t) and Q(x,t) represent the downstream and 
upstream propagating acoustic waves, respectively, then the 
results of the theory are as indicated in Figure 1. Nonlinear 
transonic effects occur in the lowest order acoustic perturba- 
tion quantitieswheneverthe perturbation level in the throat 
region is of the order of magnitude of the deviation of the 
throat Mach number from unity. This can occur in two 
ways: If the' acoustic source is at the throat and has a 
strength of O(E), or if the acoustic source is outside the 
throat and has a strength of O(e2) where E is the Mach number 
deviation. To fix ideas consider the latter case, illustrated 
in Figure 1. Directly upstream of the source a continuous 
reflection process 'occurs because of the variable area, so 
that both P and Q waves are present at O(s2) and are described 
by linear theory. However, the asymptotic inner solution shows 
that the Q wave is strengthened to O(e) by nonlinear interactions 
with the steady flow which occur when x = O(E). Since the inner 
region is small compared to the scale of variations of the steady 
flow, no reflection of the Q wave occurs at O(s): The P wave 
remains at O(s2), the relationship between them being ultimately 
determined by an acoustic boundary condition applied at some 
x < 0. Thus, as might be anticipated on physical grounds, the 
downstream wave can be considered to propagate through the throat 
essentially unaffected by the near-sonic nonlinearity, tihile the 
upstream wave is intensified in the throat region due to a trans- 
sonic trapping effect. The trapping of the upstream wave occurs 
because its velocity relative to a fixed observer is practically 
zero. It thus has a long residence time in the throat region 
of the duct. 

Other recent work on acoustic propagation in high subsonic 
Mach number flow has been numerical,Ref. 7,8. In both cases 
a quasi-one dimensional model is treated. In Ref. 7 an 
expansion in harmonics has been used and the resulting coupled 
equations integrated numerically. Some results are presented 
only for unshocked solutions and for a special reflection 
coefficient. They support the theoretical conclusions of the 
present paper. In Ref. 8 the initial value problem is inte- 
grated to a steady state and some numerical results are presented 
for the acoustic velocity potential. There is no discussion of 
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the harmonic content of the solutions and the question of 
shocks is not considered. 

Many earlier authors have studied linear quasi-one dimen- 
sional duct acoustics, but, in general, these studies have 
been concerned neither with the behavior nor with the validity 
of the linearized theory as the mean flow approaches sonic 
speed. A comprehensive review of earlier work can be found 
in Ref. 9. Tsien, and later Crocco Ref. 10, derived an 
exact solution which is discussed in Appendix D of the present 
report. Eisenberg and Kao Ref. 11 found another exact 
solution corresponding to a special, but practically unreal- 
istic, area variation. Numerical evaluation of their analytical 
results clearly exhibits singular behavior as the axial Mach 
number approaches unity. Davis and Johnson Ref. 12 performed 
numerical computations of the linearized solution for certain 
acoustic boundary conditions, while King and Karamcheti Ref. 13 
employed the method of characteristics to obtain similar numeri- 
cal results. 

The earlier numerical studies cited above yield results 
for sound propagation through a throat so long as the Mach 
number there is sufficiently far from unity. They include no 
attempt to resolve the specific behavior of the linear solution 
in the event that the throat flow approaches sonic speed, 
although they are certainly useful in indicating that difficul- 
ties exist with the theory in such a circumstance. Several 
numerical solutions illustrating the development of the acoustic 
singularity were presented in Ref. 6. 

The research presented in this report is the result of a 
joint effort by the author and Professor M. K. Myers of the 
George Washington University, Joint Institute for Advancement of 
Flight Sciences. Professor Myers' work was supported by NASA 
Langley Research Center under NASA Grant NGR-09-010-064. 
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II. SYMBOLS AND NOMENCLATURE 

a parameter measuring throat curvature 

A(x) area of duct, m2 
2 + 

Aln' BIn see Eq. (2.41) 

Ai -+ magnitude of Aln 

A;, A;, BT, B; see Eq. (A7) 

B see Eq. (2.1) 

B(x) I Bk see Eq. (2.34) 

C 
S 

stagnation sound speed, ms -1 

c (xl steady flow sound speed 

'k see Eq. (2.33) 
+ + f 

co2' cll' c12 see Eq. (2.42) 

c; (xl, D; (xl inner Fourier coefficients 

d, e geometric parameters in area variation 
+ + 

Ein' E2n see Eq. (D9) 

EX' Hz real and imaginary parts of 1: 

Fir F2, F3r F4 Hypergeometric functions 

g(X;E) see Eq. (3.29) 

G(x;E) see Eq. (2.5) 

GO G(x;e = 0) 

H (xl see Eq. (2.30) 

1; see Eq. (3.32) 

11 k, fi parameters in Crocco-Tsien solution 

J see Eq. (3.19) 

K parameter in Crocco-Tsien Mach number distribution 
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L characteristic length associated with area variation,m 

M(x; E) steady flow Mach number 

MO (xl M(x; 0) ; leading order Mach number 

Ml(x), M2(X) see Eq. (2.12) 

mlO' m20 local expansion Mach number terms 

m. (Xl , ml (Xl inner expansion Mach number terms 

No, N source amplitudes 

P (x,t) downstream perturbation Riemann invariant 

P;’ p; first and second order downstream perturbation 
Riemann invariants (inner region) 

Rx,t) total fluid pressure, kgm -2 

Q(x,t) upstream perturbation Riemann invariant 

Q;, Q; first and second order upstream perturbation 
Riemann invariants (inner region) 

r(x,Ld outer, linearized density 

r. (x,t) , rl (x,t) first and second order terms of outer 
density 

rin(x) complex amplitude of density 

r,l, ri first and second order terms of inner density 

RS 
stagnation density 

S see Eq. (2.11) 

sO 
acoustic source strength 

t time, second 

T see Eqs. (2.26) 

3x,t) total fluid velocity; ms -1 

U(x) basic steady flow, velocity, ms 
-1 

u(x,t) perturbation velocity 

co, u source amplitudes, ms -1 
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V see Eqs. (2.26) 

W see Eq. (2.29) 

Wf, w;, w; see Eq. (2.41) 

X axial distance along duct 

X stretched distance (inner variable) 

X e boundary location 

Z Crocco-Tsien axial distance variable 

a see Eq. (A71 

ct (xl duct area ratio 

dimensionless Crocco-Tsien frequency 

ratio of specific heats 

see Eq. (D.10) 

see Eq. (A71 

outer acoustic disturbance level 

Crocco-Tsien parameter 

throat Mach number deviation from unity 

phase angle inner solution 

0 8 rn' pn phase angles outer solution 

At x1* x2 eigenvalue of linearized acoustics local solution 

FI(X,t;E) outer linearized perturbation velocity 

UO(XA I l+xtt) see Eq. (2.22) 

uon (xl complex velocity amplitude of n-th harmonic 
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+X.t), l-l; (X, t) see Eqs. (3.9) 

V see Eq. (3.32) 

7i see Eq. (3.15) 

P (x,t) total fluid density 

p(x,t) perturbation density 

'I characteristic parameter inner region 

0 (t) throat source function 

w radian source frequency (radians per sec.) 

R dimensionless frequency 

Special Notation 

I I indicates absolute value of a real quantity or 
magnitude of a complex quantity 

subscript n indicates a harmonic 

superscript + indicates x > 0, x < 0,respectively - 

superscript i indicates inner variable 

superscript 0 indicates outer variable 
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III. FORMULATION AND OUTER EXPANSIONS 

A. Perturbation Equations 

Consider the propagation of sound in a variable area 
duct carrying a hornentropic inviscid ideal gas flow. The 
acoustic wave length is assumed sufficiently large and the 
area variation sufficiently slow, that the field can be 
described by the equations of quasi-one dimensional gas 
dynamics (Ref. 14) 

cspt + “i;, + ‘i;ii, + ,;(G, = 0 I 

C;; s t +;;ii + X +px=o , 
P 

(2.1) 

F - = constant = B 
7 

. 

In equations (2.1) 5, p, and u are the total fluid pressure, 
density, and axial velocity, and A(x) is the duct cross 
sectional area. The dimensionless independent variables x 
and t are measured in units of L and L/es respectively, where 
L is a characteristic length associated with the area variation 
and c is the stagnation value of sound speed in the gas. The 
geome?ry of the problem is as indicated in Figure 2 where the 
origin of x corresponds to a throat: A'(O) = 0. 

If the velocity and density in the basic steady flow in 
the duct are denoted by U(x) and R(x) respectively, then from 
(2.11, 

UR' + RU' +RU($)=O , 

(2.2) 

UU' + vBR~-~R' = 0 , 

where the energy relation in Eqs. (2.1) has been used to 
eliminate the pressure from the system. In order to study 
solutions to the system (2.1) which are small perturbations 
about the steadyvaluesu and R, it is convenient at the outset 
to define dimensionless variables u(x,t) and p(x,t) by 

h&t) = u (xl [l+u(x,t) 1 , hrt) = R(x) [l+p(x,t)l , (2.3) 

where it is assumed that U(x) # 0. It should be noted that 
the usual acoustic velocity and density are given by U(x)u(x,t) 
and R(x)p(x,t), respectively. 



Substituting Eq. (2.3) into Eq. (2.1) and employing the 
steady relations (2.2) yields the system of equations on u 
and p in the form 

Gw 
pt + M[(l+u)px + (l+P)uxl = 0 , 

Gw Ut + M(l+u)ux + ; (l+PF2Px 

+ Mg [(l+u) 
2 - (l+p)Y-l] = 0 . 

(2.4) 

In Eqs. (2.4), M(x) is the flow Mach number U(x)/c(x), c(x) 
is the speed of sound in the steady flow (c2 = yBR'-'), and 

G(x) = (>, 
2 

= 1 + (r-M2 
2 I (2.5) 

the latter expression following from the Bernoulli relation 
implied by the second of Eqs. (2.2). 

For the purposes of physical interpretation and ease of 
asymptotic matching, the system (2.4) is recast in Riemann 
invariant form (Ref. 14). The upstream and downstream pro- 
pagating perturbation Riemann invariats are defined by 

r 

y-l 
2 P(x,t) = Mu + -1 

Y 
(1+p) 2 -1 

I 
, 

(2.6) 

Q(x,t) = Mu - +- 
Y i: 

y-l 

(1+p) 2 -1 1 . 

y-3 
If the first equation in system (2.4) is multiplied by (l+p) 2 
and the second by M(x), then adding and subtracting the 
resulting two equations and using Eq. (2.6) and analogous 
expressions for the partial derivatives of P and Q yields 

c 

y-l 
1 

Pt + G1/2 M(l+u) + (l+p) 2 px + ?!!!!- 1 G3/2 [ (1+ u) 2 - (1+ p)y-l] 

M' -- 
G1/2 

y-l 
+ (1+ p) 2 1 = 0 , (2.7) 
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Q, + L 
&2 

y-l 
- (l+P) 2 Qx + GF2 -A- [(l+u)2 - (1+ p)y-l] 

c 

y-l 
u M(l+u) - (l+p) 2 1 = 0 . (2.7) 

To complete the elimination of u and p the relations 

(l+u) =1+% , 

(1+p) 2 = 1 +J+ (P-Q) , 

are substituted in Eqs. (2.7) to give 

1 

+ (P+Q) 
2 

- (y;l) (P-Q) - (y;;) 

2 

4M2 
(P-Q) 2 1 

+ 1 + y+l p + 3-Y 
4 qQ=O, 1 (2.8) 

-l+TP+yQQ 1 X 

- (y;‘) (P-Q) _ (,;;) 

2 
(P-Q) 2 1 

P+FQ =0 . 1 
11 



It is assumed that the basic steady flow quantities U 
and R are known from solving the system (2.2) subject to 
suitable boundary conditions applied far upstream and down- 
stream of the throat of the duct, x = 0. Then Eqs. (2.4) or 
equivalently (2.8) are a quasi-linear system of partial 
differential equations with strong spatial dependence in the 
coefficients (due to the steady flow Mach number terms). 
These equations describe perturbation solutions of any size 
about the known steady flow. 

Since propagation of sound in near sonic flows is the 
problem of interest, it will be further assumed that the 
boundary conditions on the basic flow yield a throat Mach 
number which is near unity. Hence, a parameter E = l-M(O) 
is introduced into the analysis, and the Mach number M is 
regarded as a function of E as well as of x. In the analysis 
to follow, E will be assumed to be positive, i.e., the basic 
flow is subsonic throughout the duct. The coefficients in 
the system (2.4) or (2.8) then all become functions of E, and 
the nonlinear theory will result from considering these per- 
turbation equations for small E. In order to analyze these 
equations the detailed dependence of the basic steady flow 
on the parameter E must be found. This is discussed in the 
next section. 

B. Basic Steady Flow 

The elementary equations of quasi-one dimensional steady 
flow (2.2) are discussed in detail in numerous texts; for 
example, a particulary comprehensive treatment has been given 
by Crocco (Ref. 15). It is straightforward to express any of 
the fluid quantities in terms of the duct area A(x) or, 
equivalently, in terms of the Mach number M(x;E). This was 
first analyzed in Ref. 6. It is the purpose of the present 
section to determine the behavior of M explicitly as a function 
of x and E. 

To beg 
Eq- (2.21, 

.in consider the well-known relation 

M’ = -MGA' 
(l-M2)A ' 

implied by 

(2.9) 

which becomes, after integration, 

clsMs(x) [l + (V-L/M2(0)l = M'(o)[l + (-;M2(x+, (2.10) 

where in Eq. (2.10) the definitions 
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A(x) - a(x) - - 
A(O) I 

and (2.11) 

S = 2(Y-1) 
(Y + 1) 

have been used. Equation (2.10) is an implicit solution of the 
differential equation (2.9) and hence an algebraic equation 
for M(x). Figure 3 shows sketches of typical integral curves 
of Eq. (2.9) for the type of area variation to be used here. 
Curves such as AB in the figure, for which M remains less than 
unity for all x are of interest. Since 1 -M(O) = E is assumed 
small, it is natural to seek an expansion of M(x;E) in the 
form 

M(x;E) = MO(x) + &Ml(x) + s2M2(x) + . . . , (2.12) 

where MO(O) = 1. Substituting Eq. (2.12) into Eq. (2.10) and 
equating like powers of E one finds that MO(O) must satisfy 

(y+l)cr'M; (y - l)M; 
2 

=1+ 
2 I (2.13) 

while Ml(x) = 0, and 
(y - l)M2 

-2M0[1 + 2 Ol 
M2 (xl = (2.14) 

(Y + 1) (1 - M;) 

Obviously the expansion (2.12) is not uniformly valid near 
x = 0: The third term is of order E: whenever l-MO(x) is as 
small as s, or equivalently M2(x) becomes infinite as x + 0. 

It remains to find MO(x) = M(x;O) in terms of x: i.e., 
to solve Eq. (2.13). It is assumed for simplicity that a(x) 
is an analytic function near x = 0 with c'(O) = 0, although 
the analysis to be carried out is easily extended to cover 
cases where cc may have kv discontinuities in its higher 
derivatives at x = 0. Thus one may write CL(X) in the form 

a(x) = 1 + ax 2 + bx 3 + dx4 5 + ex + . . . I (2.15) 
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The nonlinear acoustic theory to be studied below is derived 
for ducts with area variations satisfying the condition 
a = A"(0)/2A(O) > 0. This is not a significant restriction 
since if a < 0 the duct cannot have a throat and the case 
a = 0 is obviously special for an actual duct. Expanding 
MO(x) in a power series of the form 

MO(x) = 1 + mlOx + m20x2 + . . . , (2.16) 

substituting Eqs. (2.15) and (2.16) into Eq. (2.13) and 
equating to zero corresponding powers of x, yields for the 
branch MO(x) < 1, - 

(Y+1+1’2,x, MO(x) = 1 - [ 2 2 + m20x . (2.17) 

Hence, the leading term of M(x;&) behaves as a piecewise 
linear function of x near the throat so long as a # 0. 
The actual value of m20 in Eq. (2.17) is 

m20 = * [ (Y + 1) 11’2 b (5y- 3)a 
2 z+ 12 I 

< 
the t sign holding for x , 0 respectively. All the basic 
steady flow quantities can be expressed in terms of the Mach 
number 

M(x;E) = 1 - [ 2 1 (y+lb W7xj 2+ 
+ m20X --- 

+ c2M2(x) + . . . , (2.18) 

where m20, M2(x), etc., depend on MO(x) and c(x). This expansion 

is to be considered asymptotically valid as E + 0 for fixed x. 
It is nonuniform near x = 0; the appropriate Mach number dis- 
tribution near x = 0 will be given in Section III-A. 

C. Singularity in Linear Acoustics - 

In this section linearized acoustic theory shall be 
analyzed. In particular the breakdown of the theory for pro- 
pagation in high subsonic flow will be demonstrated and the 
detailed nature of the singularity in acoustic quantities 
shall be determined. These results are essential for the 
derivation of the correct nonlinear theory. 

If it is assumed that the perturbation quantities u and 
p are small then the system (2.4) can be linearized. Let 6 
be a small parameter measuring the order of magnitude of the 
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perturbations. The physical interpretation of 6 in terms of 
an acoustic distrubance level will be discussed in Section 
III-C. Expanding u and p in powers of 6 as 

U(X,t;E,G) = Gp(X,t;E) + o(S2) + . . . , 
(2.19) 

P(X,t;E,G) = 6r(x,t;s) + 0(B2) + . . . , 

substituting Eqs. (2.19) into Eqs. (2.4) and neglecting all 
but first order terms in 6 yields the linearized acoustic 
equations 

G1'2r t+M(rx+vx) =O , 
(2.20) 

G1/2 I-rt + Mux + k rx + g- [21.1 -.. (y-1)rl = 0 . 

Similarly, utilizing Eqs. (2.19) in Eqs. (2.6), the Riemann 
invariants are written in terms of the first-order pertur- 
bation quantities as 

P(x,t;s,G) = 6(MV+r) + 0(6~) , 
(2.21) 

Q(x,t;e,s) = a(M1-l-r) + 0(6~) . 

The linearized version of the system (2.8) is simple to 
derive, but it will not be necessary to use it in the analysis 
which follows. 

Equations (2.20), subject to appropriate boundary 
conditions, generally must be solved numerically because of 
their variable coefficients. It is necessary for present 
purposes to analyze the behavior of solutions to Eqs. (2.20) 
in the vicinity of the throat of the duct when the throat Mach 
number M(0) is close to unity. It is well known that the 
system (2.20) is singular at any point where M(x) = 1. This 
can be seen most simply by subtracting the two equations; the 
resulting equation has no 1-1, term, and the coefficient rx 
becomes (M2 -1)/M, which vanishes as M + 1. This can only 
occur at x = 0 for the duct of Figure 2. The singularity at 
x = 0 implies that, in general, the acoustic quantities r and 
p will be singular when the flow is sonic there. Thus, as 
will be seen in what follows, r and lo generally become 
arbitrarily large near x = 0 as M(0) approaches unity, there- 
by violating the assumptions made in deriving Eqs. (2.20) 
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that p, p,, r and rx all remain bounded. 
As a result of the singular behavior of the system (2.20) 

for high subsonic Mach numbers in the throat region, linearized 
acoustic theory fails for any 6, no matter how small, if the 
throat Mach number is sufficiently close to unity, i.e., for 
E small enough. In order to describe sound propagation in the 
duct in this event, one must reformulate the perturbation 
scheme to take into account non-linear terms in the system 
(2.4) which were neglected in Eqs. (2.20). However, in order 
to proceed in this direction it is necessary to know precisely 
the nature of the singular behavior of the solutions p and r 
to Eqs. (2.20). This behavior has been recognized, but never 
resolved, in previous treatments of the system (2.20) Ref. 9. 

Since the steady flow depends on the parameter E = l-M(O), 
the coefficients in the acoustic equations and hence the 
acoustic quantities 1-1 and r are functions of E. For E << 1 
we look for solutions of the acoustic equations in the form 

r = r,(x,t) + erl(x,t) + . . . , 
(2.22) 

j.l = uo(x,t) + qll(x,t) + . . . . 

Inserting Eq. (2.22) into Eq. (2.20) and using expansion 
(2.12) for the coefficients, one obtains, after neglecting 
higher order terms in E 

G1'2r 0 Ot 
+ Mo(rOx+~ox) = 0 I 

(2.23) 

G1/2 1 Mtl 
0 pot 

+ MOPOx + Mg Qx + 5 121-ro - (y-l)ro) = 0 , 

where Go is defined by Eq. (2.5) with M = MO. MO(x) is the 
leading order term corresponding to any Mach number distri- 
bution which yields a sonic velocity at the throat and a 
subsonic velocity throughout the remainder of the duct. These 
equations are singular at x = 0 since MO(O) = 1. Analytical 

solutions of the system for arbitrary MO(x) and arbitrary time 
dependence are not readily found. However, for harmonic time 
dependence the system can be reduced to a system of ordinary 
differential equations with a singular point at x = 0 and no 
other singular points within the duct. The nature of this 
singular point determines the singular behavior in the time 
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harmonic acoustic quantities. Explicit analytical results 
concerning the exact nature of the singular point and the 
dependence on MO(x) are now derived by use of series solution 
methods for linear ordinary differential equations. 

Thus solutions of Eqs. (2.23) in the form 

r. (x,t) = rOn (x)e 
in.Qt 

I 
(2.24) 

po(x,t) = von(x)elnRt , 

are sought, where Q=wL/cs is the dimensionless fundamental 

frequency and w is the radian frequency (fundamental) of the 
harmonic solution. The parameter n is introduced since super- 
harmonics of the fundamental will be shown to occur due to 
nonlinear effects. Substitution of Eq. (2.24) into Eqs. (2.23) 
and rewriting the resulting system in standard form yields 

MO 
rt)xl = 1 _ M2 ETron - S1-l~nl I 

0 
(2.25) 

MO 
'On = 1-M2 [-Vron + SuOnl , 

0 

where 
l/2 + 2M;) S(x) = inRGO - 

Go ' 

T(x) = inDGO l/2 + (Y - 1)M;) 

GO 
I (2.26) 

V(x) = 
infiGi'2 (Y - 1)M;) 

2 + . 

MO GO 

As has been seen in Section II-B the behavior of 
1 -MO (xl near x = 0, and hence the nature of the singular 
point at x = 0, depends upon the corresponding behavior near 
x=Oof the area A(x). The method of Frobenius (Ref. 16) 
will now be used to analyze the behavior of the general solution 
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to Eqs. (2.25) near x = 0 for any area variation with A"(0) 
# 0. The case of A"(0) = 0 is discussed in detail in Ref. 6. 

Since A"(0) # 0 the corresponding Mach number distribu- 
tion is given locally by Eq. (2.18): The Mach number is a 
piecewise linear function of x; thus one can analyze the 
system separately for x < 0 and x > 0. General solutions 
valid for x < 0 and x > 0 can be constructed by analytically 
extending the coefficients of the system to x > 0 and x < 0, 
respectively. This is done by extending MO(x) as follows: 
To extend to x > 0 take 

MO(X) = l + [[Y+21)a]1’2x + . . . , (2.27) 

and to extend to x < 0 take 

(~+l)a~~/~x + . . . MO(x) = 1 - [ 2 . (2.28) 

Consider the system (2.25) with MO(x) given by either of 

Eqs. (2.27) or (2.28). In each case, S, T, and V are 
extended across x = 0 as analytic functions, and the only 
singularity is easily seen to be a simple pole by using 
Eq. (2.27) or (2.28). Hence both of the extended systems 
have a singular point of the first kind at x = 0, and 
solutions can be found by the method of Frobenius. 

One accordingly rewrites the system (2.25), using matrix 
notation, as 

W' = MO T -S 1 1 'On 
1-M; -V S 

w I w= c 1 'On 
. (2.29) 

As is customary in dealing with such singular points, one 
exhibits explicitly the simple pole by writing 

l-M;(x) = xH(x) , (2.30) 

where H(x) is an analytic function of x. Then using Eq. (2.30) 
and defining a coefficient matrix by 

M T -S 
B(x) = # c 1 I (2.31) 

-v s 
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the first of Eqs. (2.29) is rewritten as 

W' =$BW . (2.32) 

Next one looks for a solution of the system (2.32) in the 
Frobenius form 

w = xh ; Ckxk I (2.33) 
k=O 

where X is an unknown constant and the Ck are unknown 2 x 2 
constant matrices with Co # 0. Since B(x) is an analytic 
function of x, it can be written as 

B(x) = : Bkxk I 
k=O 

(2.34) 

where the constant matrices B k can be found by expanding each 
of the elements of B(x) given in Eq. (2.31) in power series. 
Thus, for example, upon noting that V(0) = T(O), 

MO (0) -s (0) 
BO = H(0) 1 S(O) l 

(2.35) 

Substituting expressions (2.33) and (2.34) into Eqs. (2.32) 
and equating corresponding powers of x yields 

lBO - AI)Co = 0 (2.36) 

and the recurrence relation 

k-l 
(BO - (X+k)I)Ck = - C Bk_jCj l 

j=O 

(2.37) 

Since Co # 0, Eq. (2.36) implies that X must be an eigenvalue 
of the matrix B . By using the definitions of T and S from 
Eq. (2.26) and Fhe fact that 

19 



l- M2(x) 
lim H(x) = lim [ 
x-to x+0 

," 1 = -2M;)(O) 

the eigenvalues of B. are easily found to be 

Al=0 , 

in [ (Y + ‘) ] 1’2 
2 

(2.38) 

A2 = -1 - 
M;)(O) 

Since Xl and A2 are distinct and do not differ by an integer, 

then corresponding to each h the eigenvector Co can be deter- 
mined from Eq. (2.36) and the other Ck follow from the recur- 

rence relation (2.37). In addition, standard theorems (Ref. 
16) insure that the resulting infinite series converge and 
are actually solutions of the system (2.23). Thus, two 
linearly independent solutions, and hence a general solution, 
can be found for the system. 

To determine the form of the general solution for x < 0 
it is assumed that MO(x) is given by the extension (2.27). 

l/2 Then M;)(O) = [(y+l)a/2] , and two linearly independent 
solutions of the system are the analytic solution WY(x) 
corresponding to Xl = 0, and, corresponding to X2, 

W,-(x) = x 
-(l+inQ/a1'2)W-(x) 

2 . (2.39) 

Here the matrix W;(x) is analytic at x = 0 and W,(O) # 0. 
Similarly for x > 0 the extension given by Eq. (2.28) is 
used to obtain two linearly independent solutions: Namely, 

w;(x), which is analytic, and 

w;(x) = x 
-(l-infi/a1'2)W+(x) 

2 . (2.40) 

Thus the general solution to system (2.32) can be written as 
the linear combination 
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w+ = %n = - .[ 1 AZn [+?J+ 
(2.41) 

F(On 1x1 
ii(x)e a + B&W;(x) , 

2 f where Aln and Bin are arbitrary complex constants, and the + 
and - signs are taken for x > 0 and x < 0, respectively. In 
order to satisfy general acoustic boundary conditions 

+ 
Ain will not vanish, and thus the amplitude of the acoustic 
quantities will grow like x -1 as x -f 0. In addition; their 
phases are logarithmically infinite at x = 0. One can observe 
that, even if Aln = 0 jump discontinuities in the derivatives 
of r On and 1-1~~ at x = 0 will exist in general because of the 
jump discontinuity in M;)(x). 

In the following development, it will be required to have 
an explicit representation of two terms of the power series 
for Wi and one term of the series for Wt. Thus 

w; = 
k=O 

+ 

ix 
c11 [ 1 cr2 

+ . . . 

1x1 + . . . I 

(2.42) 

where unified expressions for Wt and Wi have been introduced 
by use of the absolute value. The coefficient matrices in 
these expressions can be determined by solving Eqs. (2.36) 
and (2.37) for the x < 0 case and the analogous equations for 
x > 0. Equivalently both cases can be treated simultaneously 
by solving the matrix equations 
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lBO -AI);;=0 , 

[BO - (x+1) I]e; = -B& , (2.43) 

^?I BODO = 0 . 

In Eqs. (2.43), X = -l- (in52 sgnx)/a 1'2, B 0 = B(O), and 

Bl = B'(O) where B(x) is given in Eq. (2.31). 
It is a matter of straightforward but lengthy algebra 

to compute the coefficients B. and Bl and to solve the algebraic 
Eqs. (2.43) for the three required matrices. An outline of this 
computation is provided in Appendix A. The results of interest 
come out to be: 

+ 
co2 = -1 , 

+ k (y+l) aI 1’2 sgn x c12+c11 = -[ 2 I 

(2.44) 
I! + 

c12-c11 = 
inQ 

1+a1,2Sgnx ($-]1'2 sgnd , 

+ l/2 
do2 = inR(y+l) - 2(y-1)a sgnx 

l/2 I 

inQ(y+l) - 4a sgnx 

in which a and b are the coefficients in the expansion (2.15) 
for the duct area ratio. 

Using the results of Eqs. (2.41), (2.22) and (2.24) the 
local form of the acoustic solution for any duct described by 
Eq. (2.15) can be written as 

r n +cI1] expinR[t+ al,2 E lnlxl +BfnexpinL?t+o(e) , 

(2.45) 

+ 
'n = Ain t 

1 
-m +ct2] expinR(t+p lnlxl 
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where the values of c iI 11' and di2 are given in Eqs. (2.44). 
It is the local expansion Eq. (2.45) which provides the 

key to the analysis of the acoustic behavior of the converging- 
diverging duct. For any fixed 6, no matter how small, the 
linearized acoustic theory fails to approximate the perturbation 
quantities near the throat of the duct as the flow Mach number 
there approaches unity. In general, both p and u become 
arbitrarily large in this circumstance, thereby violating the 
assumption made in deriving Eqs. (2.23) that they remain small. 
Numerical solutions of the lienarized acoustic equations 
illustrating the build-up of these arbitrarily large amplitudes 
were presented in Ref. 6. 

The expansion (2.19) will be termed the outer expansion 
in what follows. It is assumed to be asymptotically valid as 
an approximation to the solution to Eq. (2.4) as 6 + 0 with 
x, t and E fixed. The result (2.45) shows that it is not 
uniformly valid as x + 0 and E -t 0. In the vicinity of x = 0 
nonlinear effects become important. The correct nonlinear 
theory which must be applied to describe the sound field in 
the region of near sonic flow near the throat will be presented 
in the next chapter. 
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IV. NONLINEAR THEORY 

A. Inner Expansion and Basic Equations 

The results of the previous section lead to the con- 
clusion that linearized acoustic theory fails to properly 
describe sound propagation in the vicinity of the throat 
for E + 0. Both the singular nature of the outer expan- 
sion of the basic steady flow Eq. (2.14) and of the 
acoustic solution Eq. (2.45) indicate that the size of 
the region around x = 0 in which the outer expansions 
fail is of O(s). Thus we introduce a "stretched" or 
inner variable 

x = [Y+l 112 5 
-71 E (3.1) 

and examine the basic flow and the perturbation solution 
in the inner region, X = O(1). 

Equations (2.2) can be used to derive the well-known 
equation for the flow Mach number in terms of the area 
ratio of the duct: 

dM MG 1 da -cm--- 
dx l-M2"dx * (3.2) 

The solution to this equation is given by Eq. (2.10), but 
it is convenient here to solve Eq. (3.2) over again in the 
inner region. An inner expansion for M of the form 

M(x;E) = Mi(X;s) = ma(X) + &ml(X) + . . . (3.3) 

is assumed. Transforming Eq. (3.2) to the independent 
variable X of Eq. (3.1), substituting the expansion (3.3) 
into Eqs. (2.5) and (3.2) and using Eq. (2.15) for a, then 
yields the sequence of equations on the mi. The first two 
of these are 

dmO x=0, and 
dml 

ml dx = aX . 

Thus, 

mO = b. , and ml = t (aX2+bl)1'2 , 

where b o and bl are constants which in general would be 
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determined by asymptotic matching of the expansion (3.3) 
to the outer expansion (2.18). Rowever, in this case the 
matching process can be avoided because of the fact that 
the small parameter E is defined in terms of Mi itself. 
Thus, Mi(O;s) q l- E, which implies that b. = 1, bl = 1, 
and that the minus sign on ml is appropriate. Hence, the 
inner expansion of the basic flow Mach number becomes 

M=(X;s) = l-~~(aX~+l)~'~+O(s~) . (3.4) 

Using Eq. (3.4), corresponding inner expansions of any of 
the basic flow quantities can be constructed. For example 
from Eq. (2.5) 

G(X;&) = G=(X;c) = qL - s(y+l)ml(X) + O(s2) (3.5) 
and 

M'(x;&) = g g = -(,) y+l l/2 m;(x) + O(E) 

where 

ml(X) = (aX2+1)1'2 . (3.6) 

Similarly 

U=(X;s) = c(X)M=(X;s) = cs M=(X;e) 
[Gi(x;E)]1/2 l (3m7) 

The above results for the inner expansion of the basic 
steady flow will now be used to derive the non- 
linear inner equations for acoustic propagation. The 
Riemann Invariant form of the perturbation equation will be 
treated in detail while analogous results for density and 
velocity will be sketched in Appendix B, 

If the relations (3.4) and (3.5) and the change of 
variable (3.1) are substituted into Eqs. (2.7), the 
equations become 

Y-l 
i 1 y+l 

- . 
Pt+ (,+-m + y-l 1 . ..)[(l-eml+...)(l+ui) + (l+Pi) 2 IPS; (3.8a) 

2Itl.i 
- y+l [l+ 27+;2) Em + 1 . ..I [(l+ui)2 - (l+Pi)y-ll 

y-l 
+mi(l+$Eml+...)ui[(l-Eml+...)(l+Ui)+ (l+pi) 2 ] = 0, 
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and 
y-l 

Qt+ ($+sml+.. .)[(l-&ml+... )(l+ui)-(1,~~) 2 ]Q; (3.8b) 

2Itl.i 
-.+1+2{:;2) &ml+...1 [(l+u i2 ) - (l+pi)y-l] 

y-l 
Y-l +ITli (l+y+lEml+... )ui[(l-cml+ . ..)(l+ui) - (l+pi) 2]=o 

respectively. In Eqs. (3.8) the notation ui, pi, Pi and Qi 
has been used to denote the expressions for the perturbation 
quantities as functions of the inner variables x and t. Now 
it is assumed that ui and pi can be expanded in powers of E 
as 

U=(X,t;E) = E+X,t) + E2+X,t) + . . . , 

pi(X,t;c) = Eri(X,t) + E2ri(X,t) + . . . 
(3.9) 

. 

These expansions of u and p yield the corresponding expres- 
sions for P and Q from Eq. (2.6): 

P=(X,t;E) = &Pl(X,t) + c2P2(X,t) + . . . , 
(3.10) 

Q=(X,t;E) = EQ1(X,t) + E2Q2(X,t) + . . . . 

where 

(3.11) 

The expansion for Pi from Eq. (3.10) and the series of 
Eq. (3.9) are substituted into Eq. (3.8a). Equating the 
coefficients of powers of E separately equal to zero then 
yields 
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O(1): Pl = cl , 
X 

(3.12a) 

O(E): P2 = - ; P _ Y-l - 
X It Y+l 

miPl . (3.12b) 

Similarly, if the expansion for Q1 from Eq. (3.10) and the 
series of Eq. (3.9) are substituted into Eq. (3.8b), the 
lowest order terms yield 

Ql + + 4 Y+l 
2m' 

Pl + Q, -l)Qlx 1 

t 
-- y+l 13-Y - 2 p 1 +y+l - 2 Ql] = 0. (3.13) 

The inner equation of motion on Q, follows in a similar manner. 
However, because it is complicated and will not be needed in 
the following, it is omitted here. 

Equation (3.12a) and Eq. (3.13) consitute the leading 
order nonlinear theory governing sound propagation through a 
near-sonic-throat of the form of Eq. (2.15) with a # 0. At 
this point, considerable progress in treating these equations 
can be made by taking advantage of certain facts which are 
apparent. First, both the first and second order equations 
on P are linear. Second, the combination ~.l+r from Eq. (2.45) 

in non-infinite as x + 0, because the terms in 1x1 -1 cancel, 
whereas V- r in the outer (linear acoustic) solution is 
infinite as x + 0. These considerations suggest that in 
reality P is of smaller order than Q in the inner region, 
and that the downstream wave passes through the throat essen- 
tially unaffected by nonlinear interactions with the near- 
sonic flow. This suggestion is supported by physical reason- 
ing as well. The Q wave, which propagates against the flow, 
is intensified relative to the downstream wave P by a 
transonic trapping near the throat. Thus, it will be assumed 
here, and verified later by asymptotic matching, that Pl - 0. 
Then Eqs. (3.12) and (3.13) imply 

Q1t 
+ p+l 4 Ql -ml)n,x-miQl = 0 I (3.14) 

and that P2 is independent of x. 
If the definition 

rr(X,t) Y+l = 4 Ql -ml , (3.15) 
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where m 1 = (aX2+1)1'2, is introduced into Eq. (3.13) it 
becomes 

I% 
+ mx = aX . (3.16) 

The solution of this equation will be discussed in the next 
section. 

B. Solution of the Nonlinear Inner Equation -- 

The nonlinear partial differential equation 

% + mrx = aX , -03 < x < aJ (3.17) 

which describes the upstream propagating sound in the throat 
region will now be solved by the method of characteristics 
Ref. 17, It follows directly by this method that the 
characteristic curves in the t, X plane are solutions to 
the differential equation 

dt 1 -=- 
dX n ' (3.18) 

and that along these curves, 

c& p](g) =ig . 

Integrating this ordinary differential equation along the 
characteristics yields 

-ri = + (aX2+J) l/2 

where J is a constant along a characteristic. It can be 
shown using matching considerations similar to those given 
in Section III-C below that the solution to the above 
equation corresponding to the plus sign must be discarded. 
Thus for the remainder of this report the solution to be 
used is 

yT = - (aX2+J)1'2 . (3.19) 

28 



If positive solutions for rare _assumed then it can be 
shown that the total axial velocity u will be supersonic 
throughout the inner region. Hence, unless shock waves are 
introduced in the inner region, matching with the subsonic 
outer solution is not possible. [It is expected that positive 
solutions will be necessary to treat cases with shocks present.] 

It is convenient in solving the specific problems con- 
sidered in Section III-D to introduce the parameter -r, where 
t = T along the line X = 0 and to call the value of IT at X= 0, 
4 (t) l Then using 

T(o,t) = - J l/2 = Q(t) = O(T) , 

the solution IT can be written in the parametric form 

Tr(X,T(X,t)) = - [aX2+$2(T)]1'2 . (3.20) 

Using Eq. (3.20) in Eq. (3.18) and integrating the resulting 
separable ordinary differential equation yields the one 
parameter family of charasteristic curves 

1 t = T-- 
,1/2 In 

aw X+ (3.21) 

If the function $ is known then Eqs. (3.20) and (3.21) 
provide a solution to Eq. (3.17) for -00 < X < ~0. This will 
be the case for an acoustic source of O(E) located at the 
throat of the duct; hence, the inner solution is completely 
determined to leading order and plays the role of a boundary 
excitation on the acoustic field in the outer region. On 
the other hand, if the source of sound is located in the 
outer region, then (p(t) cannot be determined without 
simultaneously solving the outer equations and asymptotically 
matching their solutions with the inner solution r. Regard- 
less of the location of the source G(t) must be a periodic 
function, with period 2v/R equal to that of the source, since 
the overall acoustic field and hence n must be periodic 
functions. In the remainder of this section and in the next 
section on asymptotic matching Q shall be assumed to be a 
periodic function. When C$ is periodic then IT(X,-C) is periodic 
in 't with the same period. In addition Eq. (3.21) implies 
that t- T is a periodic function of T with this period. Thus 
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7~ is periodic in t with the period of Q,. 
Before carrying out the matching several observations 

are in order concerning the solution T and the characteristic 
curve. In particular a condition will be derived which 
insures the existence or nonexistence of acoustic shocks. 

If IT is allowed to vanish, then a careful analysis would 
show that ~IT/~X will be infinite, and hence shocks in the 
solution TT are to be expected. In addition it follows from 
Eq. (3.20) that 

where 

Rewriting Eq. (3.21) as 

1 F(X,t,r) = t-T-- ,1/2 ln 
X+ (ax2 + $2)1'2 

I+1 

and using the implicit function theorem yields 

a-c -FX -c-c Q 
8X FT IT+-X@' (3.23) 

where 
1 FX=--+ and FT = - 1+x$' ' 

T@ 
. (3.24) 

It is clear from Eq. (3.22) that if a-c/ax is finite then 
an/ax will remain finite (and hence no shocks will appear 
in the inner solution). It follows from Eq. (3.23) that 
aT/ax remains finite if 

sO 
= nq)-X()’ = -(aX2+G2) $-XC$' f 0 . (3.25) 

Since at X = 0 so = -Id+ > 0, So> 0 for all X < 0, t > 0. - 
Using Eq. (3.25) the condition So> 0 is equivalent to 

(aX2+$2)1/2 > - ?$.L . 
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This condition is always satisfied if 4' > 0 since -X/G < 0. 
If however, $' < 0 for any t which is the case for $(t) 
periodic then So > 0 if and only if 

a+ 
2 -(#q2,0 . (3.26) 

If condition (3.26) is not satisfied, then it follows 
from Eq. (3.24) the F= vanishes at some X,t. Hence, the 
characteristic curves intersect. Therefore, violation of 
condition (3.26) implies that shocks must appear in the 
inner perturbation quantities. The physical interpretation 
of Eq. (3.26) will be discussed in Section III-D. 

C. Asymptotic Matching 

The solution in the inner region has been expressed in 
a form suitable for matching in the previous section. This 
solution will now be matched to the outer solution in order 
to relate the overall perturbation level 6 away from the 
throat region to the perturbation level E in the throat or 
inner region and to relate the acoustic field in the outer 
region to the acoustic field near the throat. The matching 
process will thus involve a distinguished limit and is 
intricate. Since the basic steady flow quantities have 
been matched in Section IIIB, it is only necessary to match 
the perturbation velocity and density u and p or equivalently, 
the perturbation Riemann invariants P and Q. 

Here the matching will be carried out for P and Q. The 
matching of u and p is assured by the matching of P and Q. 
For details of the former see Ref. 4. In order to completely 
determine the leading order inner and outer solutions matching 
of the leading order P and Q waves will be required. 

The one-term inner expansion of Q, denoted here by Q il , 
is given by Eqs. (3.10), (3.15) and (3.20) in the form 

Q 
il = EQl(X,t) = y+l -fE- [(ax2 +1)1'2 - (ax2 + @2(=))1'2]. (3.27) 

To apply the matching principle of Van Dyke, Ref. 18 , 
to relate the inner to the outer solutions a one-term outer 
expansion of the expression (3.27) is required. This is 
obtained by using Eq. (3.1) to express the inner quantity 
in outer variables 
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= y+l 
4py)y2 1x1 [(1+ a(;:)x2]1’2 - [l+a;;+y)~2]1’2] l 

Expanding this expression for fixed x and small E using the 
series 

(l+ y)1'2 =1+;y+... I 

and retaining the leading term in E yields 

Q 
il 
01 = (2 y+l) 

3/2 c2 

a1'21xl 
D-$2(-c)l * (3.28) 

il Here the notation Q,, is used to indicate the one-term outer 

expansion of the one-term inner expansion. 
The parameter 'I in Eq. (3.28) is determined from the 

characteristics of Eq. (3.21), also by expanding in E with x 
fixed and retaining only the leading term: 

where 

t=-c+ sgn x In]@(T)/ + g(x;s) 
,w 

I (3.29) 

g(x;lz) =- Y+l sgn x ln[2(2 
,1/2 

a)li2 Ix1 
El ' 

To utilize the results (3.28) and (3.29) requires dis- 
il playing the explicit dependence of Q,, on x and t. Because 

I$~(,) is a periodic function of t with period 27r/R it can be 
expanded in a Fourier series as 

,P2(~) = iCi+ F cosnRt + D:(x) sinnRt I , (3.30) 
n=l 
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in which the + and - signs refer to x > 0 and x< 0, respectively. 
The evaluation of the coefficients in Eq. (3.30) is carried out 
in detail in Appendix C. The results are 

c+ = 
n2512 -l/2 

; (l+T) 
II:1 cosnn(gke$, 

n 
(3.31) 

In Eq. (3.31) the I: are defined by 

and the phase angles by 

I!z 

fj’=-2& [tan-' * + tan-l 21 . 
n 2a E; 

(3.32) 

(3.33) 

in which EA 
k +- 

and H are the real and imaginary parts of I~. 

The exponent v innEq. (3.32) is 

inR 
V = 2- 

a 1/2 - 

Therefore, combining Eqs. (3.28), (3.29), (3.30), and (3.31) 
il 

the explicit representation of Q,, is 

Q il = 
01 (2 y+l) 

3/2 c2 
.1/2 I1 

- t jl(lC *)-1'2,1;, cosnSl(t-gTB*)l. (3.34) 

The outer expansion of the complex solution Q for a 
periodic wave of period 21~/a can be constructed as a Fourier 
series from Eqs. (2.21), (2.22) and (2.24) in the form 
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Q0 = 6 y (fiJO~On - rOn) exp (inat) +0(~6) . (3.35) 
n=l 

The one-term inner expansion of the leading term of this 
outer expansion, 01 denoted here by Qil, is formed by expanding 
each harmonic component for small E, keeping X fixed, and 
retaining only the leading term. This is equivalent to 
expanding each harmonic for small x, which is precisely the 

result given for pan and rOn by Eq. (2.45). If Eq. (2.17) 
is used for MO(x), then to leading order for small x Eq. (2.45) 
yields 

+ 

Mol-lon - r 
-2Aln 

On L? -/-Zj- exp i&(t+ ylT2x lnlxl) . 

The physical value of Q" is found by taking the real part of 

Eq. (3.35). Thus, if Ain, n > 1, - 
with A' 

is written as AAexp (inG)Pi) 

n real, the one-term inner expansion of the physical Q 

follows as 

Q. =-f$ 
co 

01 
11 [AtO+ 1 AAcosnG(l+ sgn x .(3.36) 

n=l 
1,2 14x1 + Yf.)l 

a 

Now, by the matching principle, Ref. 18 Q;; = Q;;. 
Equating the results of Eqs. (3.34) and (3.36) gives 

6 = E2 

+ A;o =-z 1 (2 y+l) 312 1 
,1/2 

(l 

A;=$(- 2 1 3/2 - 1 n2n2 -l/2 

Y+l ,w ('+ 4a -1 (3.37) 

y+ = +j-ln[$(F a) +l 
n a 

1'2] - Bnlsgnx 

Eqs. (3.37) yield the relationships between the complex constants 
+ 

Ain of Eq. (2.45) in the linearized solution on either side of 
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the throat region. In addition, the result shows that the up- 
stream wave Q, which is O(tS) in the outer region, is strength- 
ened to O(E) = O(CS~'~) in the inner region as a result of non- 
linear interactions with the near-sonic flow. 

The results of Eqs. (3.37) indicate types of nonlinear 
effects predicted by the theory. They include in addition to 
the intensification of the Q-wave a generation of superharmonics 
and an acoustic streaming effect. 

It remains to determine the relation between the complex 
constants Bz 

Jn of Eq. (2.451, which is done by asymptotically 
matching the downstream wave P. In the inner region the fact 
that P1 E 0, and Eq. (3.12b) imply that P2 = P2(t) and thus 
using Eq. (3.10) implies 

P il = s2P2(t) 

il which is equal to PO1 because P2 is independent of X. On the 
other hand, the complex P in the outer region is 

P 01 = 6 T lBIOl-lOn + 'On) exp (inn) 
n=l 

(3.38) 

from Eq. (2.21). Use of Eq. (2.17) for MO(x) and expansion of 
the components of the series (3.38) for small x using Eq. (2.45) 
yields for the leading term 

MOIJOn+rOn k Aln ' [cil+cr2+ (q) a)1'2 sgn xl 

x exp in8(t+p lnIxl)+B~n(l+d~2) . 

Then Eq. (2.44) shows that the term multiplying Ain vanishes 
in general so that 

01 
Pm 11 = 8 y B+ (l+di2) 

n=O In 
exp (i&t) , (3.39) 

AZ in which do2 is given in Eq. (2.44). This result verifies the 
earlier assumption that Pl(X,t) E 0, as the leading order outer 
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term for P is not singular as x + 0. Finally, since Pii is 

independent of X, the matching can be accomplished by simply 
equating the complex expressions (3.39) on either side of 
x = 0. Thus 

Bin(l+di2) = B&(l+di2) 

+ and solving for the ratio of Bin to Bin using Eq. (2.44) for 
di yields 

y&= [inQ(y+l) + 4a l/2 ] (inR - a1'2) 
+ 1'2] (inR+a1'2) . 

(3.40) 
Bin [inQ(y-1) - 4a 

Equations (3.37) and (3.40) represent the primary results 
of the inner solution process. If the function Q(t) is known, 
then they provide two complex equations for the four complex 

f constant Aln and B I!I ln for each n. The remaining two equations 

to determine these constants are the acoustic boundary and 
source conditions which will be stated for specific cases in 
the following section. In general, of course, G(t) is not 
known, and must be determined along with the constants Af 

'in 
In and 

taking account of the complicated coupling between the 
inner and the outer solutions. The general case can Qe reduc?d 
to a coupled system of transcendental equations for Aln and yn. 
It will not be discussed further in this report. 

D. Solution of Specific Boundary Value Problems - 

In order to complete the specification of a boundary 
value problem two boundary conditions must be prescribed for 
the perturbation quantities. These could both be applied in 
the outer region, on either side of the throat. A typical case 
would be an anechoic termination upstream of the throat and a 
single harmonic sinusoidal velocity source downstream of the 
throat. Another possibility is to have one boundary condition 
applied at the throat of the duct and the other either upstream 
or downstream of the throat. Several examples of the latter 
case will be discussed in this section. 

As was discussed earlier, the function Q(t), upon which 
the asymptotic matching is based is known a priori only if the 
acoustic source is located at the throat of the duct. In order 
to illustrate the theory in the present report, it will be 
assumed that @ is known. This allows solution of two specific 
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problems: transmission of sound upstream or downstream from 
a source at the throat and transmission through the throat 
from a reconstructed source in the outer region which yields 
the specified $ at the throat. 

In order to solve these problems it will be assumed here 
that the function G(t) is given by 

4(t) = (l-No) (-l+N sin nt) (3.41) 

where N 
8 

and N are specified constants. It will now be 
verifie that this $ corresponds to a perturbation velocity 
at the throat having both a steady and a single unsteady 
sinusoidal component at frequency R. To show this consider 
a source condition on the total perturbed velocity field of 
the form 

U(X;E)U(X,t;E) = U=(X;E)u=(X,t;E) 
x=0 I x=0 

GO+GsinW 1 (3.42) 

where 6 and 6 o are constants. Here the source strength is 
taken to be of order E to be consistent with the condition 
that the acoustic perturbation quantities are of order E in 
the inner region. Using Eqs. (3.7) and (3.9) this condition 
becomes to first order in E 

lJ=(o,t) = $ (x$1/2 
S 

(G, +C sin Gt) (3.43) 

Since Pl = G+ri = 0 and Ql = p:-ri = 21~.:, Eq. (3.43) 
implies 

QIUW) = ” (I$L)li2 (sO+Gsin SX) 
S 

and from Eq. (3.15) 

r(O,t) = q Q,(O,t) - ml(O) 

= ” (9) 312 (GO+CsinRt)-1 . (3.44) 
S 
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However n(O,t) = @(t) when G(t) < 0 and then equating Eqs. 
(3.44) and (3.41) gives 

No= s [ 
$- (xg) 3/2 Go 

I 
and 

(3.45) 

(3.46) 

Thus prescribing a velocity source of the form Eq. (3.42) at 
the throat of the duct completely determines e(t) in the form 
of Eq. (3.41). It should be noted that if No = 0, the applied 
source has no steady part. 

Since e(t) is known,use of Eq. (3.41) in Eq. (3.32) gives 

1; = ; (1-No)2 (2 +N2) 

So that Eq. (3.37) yield for ATo 

+ 
Alo =-?z y+l) 

l(2 - 
312 1 

,w 
[I- (1-N0)2 (l+$)] . (3.47) 

Now the coefficient 
+ 

Alo represents a steady component in the 
acoustic perturbation quantities in the outer region, which is 
a form of acoustic streaming. If N 0 = 0 then there is no such 
steady component at the throat. In this case Al0 + #O. However, 
by choosing 

2 -l/2 
No = 1 -(1+%) (3.48) 

the streaming term Ato can be suppressed in the outer region. 
One case to be considered here will require that condition 
(3.48) holds with No # 0. Thus no streaming will occur in the 
outer region. The other case to be considered in detail will 
have a nonzero streaming term. ' 
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If No = 0 then Al0 ' # 0 for 4(t) given by Eq. (3.41) and 

a streaming term will occur in the outer solution. Here an 
acoustic source at the throat of the duct will cause an acoustic 
stream effect in the outer region. 

Since solutions without shocks are being considered in the 
report the function G(t) must satisfy condition (3.26) namely 

If 4 is given by Eq. (3.41), then, this condition becomes 

[ 
cosRt 2 

1-NsinOt' ' 

Maximizing the right side of this inequality with respect to t 
yields 

(3.49) 

Thus in order to have no shocks in the inner region the 
conditions 4 < 0 (since IT < 0) and Eq. (3.49) must,be satisfied. 
The condition $ < 0 implies that if No = 0 then N < 1 while if 
No # 0 then 0 < No < land 0 < N < 1. It is interesting to note 

in the case N = 0 0 that if the parameter E is reintroduced then 

the source strength is in effect EN. If this product is denoted 
by So then Eq. (3.49) can be rewritten as 

2 E2 SoI- . 2 
1+$ 

(3.50) 

In this form the shocking condition relates the source strength 
and frequency, the curvature of the throat and the deviation 
of the throat Mach number from unity. As is to be expected 
shocks will occur at lower source strengths for higher Mach 
number flows. Similarly a high frequency source or a flat 
throat region (small a) will lead to earlier shocking. 

To completely prescribe the boundary value problem and 
determine Atn and B f In' two more conditions are required. These 
are the acoustic boundary and source conditions. If the 
boundary conditions are applied well away from x = 0 then it is 
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necessary to solve the outer equations (2.25) before completing 
the solution. This can be done numerically. To illustrate the 
theory here, however, it is more convenient to choose a special 
dust shape due to Crocco and Tsien for which an analytical 
solution to the system (2.25) is known. This solution is 
discussed in Appendix D. 

For the case of upstream propagation from the throat it 
will be assumed that the plane x =-xe of the Crocco-Tsien duct 
is anechoic so that the acoustic boundary condition there is 

P 01 (-x,,t) = 0 . (3.51) 

Use of Eqs. (3.38) in Eq. (3.51) as discussed in Appendix D 
then gives 

Eln - = (2K) R-l Aln y = 

E2n Bin 
rn be) (3.52) 

in which l?,(x) is a ratio of combinations of hypergeometric 
fUnCtiOnS whose specific form is given in Appendix D. 
Eq. i3.52) is the third relation used in the determination 

f of Aln and Bin, in the case of anechoic conditions upstream 
of the throat. 

The final equation to determine Ain 2 and Bin is the source 
condition. For the source at the throat, prescribing the 
acoustic perturbation velocity results in Eq. (3.41) for G(t), 
which completely solves the problem of proagation out through 
the exit upstream. A& is given by Eq. (3.37) directly, Bin 

is determined using Eq. (3.47), and the sound field is 
constructed using Eqs. (D7) and (D8). 

A similar procedure would solve the problem of downstream 
propagation from a throat source if the exit condition were 
applied at a positive x. In this case Eq. (Dll) is used + 
instead of Eq. (3.47) and the source condition determines Aln 

instead of Aln. 
The procedure just described was implemented numerically 

and results were obtained for three different types of boundary 
value problems. The details of the numerics are discussed in 
the next section. 
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For the special case of transmission from a source down- 
stream of the throat which can be treated using the above 
approach, @(t) is still assumed to be given by Eq. (3.41). In 
this case Eq. It (3.37) yields Aln, Eq. 

Eq. (3.40) determines Bin. 
(3.52) gives Bin and 

The acoustic field on either side 
of the throat is then given by Eqs. (D7) and (D8). This result 
can be viewed as the sound field transmitted upstream from a 
periodic velocity source located at some x > 0, where the 
strengths of each of the harmonic source components are 
constructed using Eq. (D8) at the source location. This pro- 
cedure is special in that the source strength and harmonic 
content is not to be specified but rather is part of the 
solution. An iterative procedure could be set up to control 
the harmonic content of the source by changing the form of $(x) 
(by increasing its harmonic content). This case will not be 

discussed further in the present report. 

E. Numerical Results and Discussion 

The results to be presented here were obtained by 
numerically implementing the procedure described in the last 
section. That is: 

(1) A choice of the parameters No, Nl and R in Q(t) 

(Eq. (3.41)) and the parameter a was made. Then the integrals 
1; were evaluated numerically by Simpson's rule. This deter- 

+ 
mines, using Eq. (3.37), A' and upon choosing the coystants Alo, n 
a value of E the phase angles ly,. 

(2) Either Eq. (3.47) or Eq. (Dll) was then employed to 
determine either Bin or Bin respectively. The former being 
used when the anechoic condition is applied upstream of the 
throat and the latter for a downstream anechoic boundary. The 
hypergeometric functions in these expressions were evaluated 
by use of the standard power series representation for these 
functions. 

First although the results of the asymptotic matching are 
sufficient to transfer the acoustic field through the duct 
without further consideration of the inner solution, it is of 
interest to display this solution to illustrate the approach 
to shock formation discussed earlier. Figures 5 - 8 show 
the inner acoustic velocity ut(X,t) evaluated by use of Eqs. 
(B7) and (3.21) at one fixed time for 1x1 < 10 and for the 
indicated values of the parameters N, No, E and a. In Figure 

5 the value of No = 0 and hence the source at x = 0 has no 
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steady part. The steepening to a shock is clearly indicated 
and condition (3.49) yields the value N = .7746 for shock for- 
mation. Figure 6 yield similar results for the indicated 
values of N, with N 0 related to N by Eq. (3.48). Similarly in 
Figures 7 and 8 the variation of pi(X,t) with the source 
frequency R and the geometric parameter a respectively is 
shown. In both cases the shock formation is evident. 

In Figure 9 the acoustic velocity is shown for six 
equally spaced times over a period 2m/R. The upstream propa- 
gating nature of the inner acoustic velocity is clearly evident. 

The remaining discussion will require an expression for 
the time averaged acoustic power transmitted out through the 
exit of the duct which in each case is taken at either x = +.06 
or x = -.06. The acoustic power, calculated according to the 
expression given in Ref. 19 can be written in terms of the 
dimensionless variables of this report as 

a (x)M 
*= 2 ' G[',t-';J k[tro,i2 + Mi("oo)2 - (l+M~)(rOO)(~OO)] 

s s 

+ M&Jonl 2 + (l+Mi) Iron1 I~0n(cosn~(6rn-6~n) 
II 

in which Brn and 6 and 
vn 

are the phase angles of the complex r On 
'On' respectively, and Rs is the stagnation density of the 

steady flow. Here roO and poo correspond to steady perturba- 

tions or acoustic streaming type terms. 
Figures 10 - 13 give results for a source located at the 

throat of the duct, with No = 0 and an anechoic upstream 

boundary. In Figure (10) results for two cases with the source 
strength fixed at S 0 = EN = .03 and .06 are presented. The 
effect of increasing the throat Mach number (decreasing E) on 
the upstream transmitted acoustic power is determined. In both 
cases there is marked attenuation with increasing Mach number. 
It is of interest to note that shocks will occur for E = .08484 
when S = . 0 06 and for E = .04242 when So = .03 (Eq. (3.50)). In 

Figures 11 and 12 the upstream transmitted power is pre- 
sented for varying G? and varying a respectively, with So and E 

fixed in both cases. Results indicate that the transmitted 
acoustic power increases with increasing source frequency and 
decreases with increasing a. 
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In order to study the harmonic content of the solution in 
the outer region upstream of the throat the ratio W,/W was 
calculated where W n is the acoustic power carried by the n-th 
harmonic. In Figure 13 this ratio is plotted against the 
deviation of the throat Mach number from unity (E) for the 
fixed source strength SO = EN = .03. Curves are given for the 
first three harmonics. It is seen that as E decreases the non- 
linear interaction causes an increasing fraction of the total 
power to be distributed among the higher harmonics. For 
&=. 05 approximately 86% of the power is carried out in the 
fundamental harmonic. This nonlinear effect occurs even though 
no shock has formed in the inner region. It is quite 
important to emphasize that if linearized theory had been 
applied in the inner region all of the acoustic power would have 
remained in the fundamental harmonic. This result is of obvious 
signficance in the design of experiments to measure sound radia- 
tion out of near-sonic inlets. 

The remaining results discussed in this report correspond 
to c;;ez8;here N 

8 
# 0 and the parameters N and N 

& 
are related by 

Eq. . . Hen e no streaming will occur in th outer region. 
in these cases. In Figures 14 - 17 results are presented for 
an upstream anechoic boundary. The results of Figure 14 are 
similar to those of Figure 13 in that about 15% of the energy 
is carried by higher harmonics for values of N below the value 
where shocks will occur. In Figure 15 , E = .l, No = .Ol and 
a = 1.0. Hence the throat Mach number and the source strength 
are fixed and the variation of W,/W with frequency is given for 
the first three harmonics. The graphs show that the nonlinear 
effect due to increasing source frequency leads to multiple 
harmonics and a spreading of part of the power to higher 
harmonics. 

A similar result is shown for variable throat curvature 
parameter a in Figure (16). In this case the flatter the 
throat the more pronounced the nonlinear effect. This is as 
should be expected since for a fixed throat Mach number 
(E = .l in this case) the duct with the flatter throat region 

will have a greater portion of high subsonic flow around the 
throat and hence a more pronounced nonlinear effect. Figure 17 
gives the dimensionless acoustic power W/R c3 radiated upstream 
as a function of No for E fixed. As is tosbg expected the 
acoustic power transmitted increases as the value of N is 
increased. 0 
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In Figures 18 - 20 results are given for the case where 
the anechoic boundary was placed downstream of the throat and 
thus the power flow will be downstream. There is however an 
upstream propagating Q-wave in the duct because of reflections 
of the downstream propagating P-wave. These reflections are 
due to flow gradients (not the boundary) and occur in the 
outer region (downstream from the throat). The presence of 
the Q-wave can be expected to lead to nonlinear results. 

This is in fact the case as is indicated in Figures 18 - 
20 where results similar to Figures 14 - 16 respectively 

are given. It is interesting to note that the total power is 
larger in the downstream case than in the upstream case for 
the same source at the throat. This is to be expected since 
in the former case the power flow is in the fluid flow 
direction. The spread of power to the higher harmonics is also 
more pronounced in this case. It is interesting to note in 
Figure 19 that as R increases the second and then the third 
harmonics have maximum values for F',/W. This indicates as do 

other numerical results that as shocking conditions are 
approached a great many harmonics are carrying the acoustic 
power. 
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V. CONCLUSIONS 

I. The study has shown, using a quasi-one dimensional 
model, that linear acoustic theory is not valid in general for 
sound propagation in near sonic duct flow. Linear acoustic 
quantities become infinite in such flows at the throat of a 
converging diverging duct. 

II. A new nonlinear theory to describe sound propagation 
in such situations is derived by the method of matched asymp- 
totic expansions. The nonlinear theory must be used in the 
vicinity of the throat while linear theory still holds away 
from the throat. Asymptotic matching is used to connect the 
nonlinear and linear regions and to completely determine the 
acoustic field in the duct. 

III. Analytical solutions are obtained to the nonlinear 
equations, thereby illustrating the physical propagation 
process. These are: 

(1) Intensification of upstream propagating sound due to 
a transonic trapping. 

(2) To leading order,downstream propagation obeys linear 
theory. 

(3) An infinite number of superharmonics are generated 
by a single frequency acoustic source. 

(4) Acoustic streaming effects are present in general. 
(5) Shocks will occur in the acoustic quantities when 

condition (3.26) or (3.50) is not satisfied. This condition 
relates source amplitude and frequency, steady flow Mach 
number and the curvature of the throat of the duct. 

(6) The acoustic power radiated out of the duct depends 
on the ~4 and thus decreases rapidly as the throat Mach number 
approaches unity. 

IV. Numerical studies are carried out for several simple 
boundary value problems to illustrate the predictions of the 
theory. These results include: 

(1) Appreciable percentages (over 15% in many cases) of 
the acoustic power transmitted upstream out of the duct will be 
carried by superharmonics of the source frequency. This can 
occur before acoustic shocks appear. 

(2) Increasing the source strength or frequency or de- 
creasing the geometric parameter a increases the nonlinear effect. 

(3) Shocks will occur at typical acoustic source fre- 
quencies and amplitudes and thus their effect must be studied 
further. 

V. Numerical and analytical results indicate that super- 
harmonics and shocks will be observed in near sonic duct flows. 
Experimental work to detect such effects in actual flows would 
be of much interest and benefit in understanding the acoustic 
processes at work. 
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Appendix A. LINEAR ACOUSTIC THEORY 

In this appendix a sketch of the derivation of the 
constants inthe local expansion of linear acoustic theory 
Eqs. 
Eqs. 

(2.44) will be given. To determine di2 the last of 
(2.43) 

must be solved. Here T and S were defined in Eqs. (2.26). 
This is just two linear homogeneous equations in two unknowns 
and thus eigenvectors of the B. matrix corresponding to the 
zero eigenvalue X = 0, are being found. Thus 

+ T(O) 
do2 = S(0) 

Using the results 

= 

innGi'2 + $ 

. 1 
inaGy2 + (y;o)F1o 

I 
x= 0 

M;)(O) = -[(y+l) p2 sgnx 

Go (0) = (‘;‘) 

(A2 1 

(A3 1 

Eq. (A2) reduces to the desired result (Eq. (2.44)). 

The constants c + 
o2 are found by solving the first of 

Eqs. (2.43): 

where 
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APPENDIX A 

x = -I- (in&? sgnx) 

a m 
(A4) 

and B o is as given in Eq. (Al). The solution is easily found 
+ to be co2 = -1 by using the definitions of T(O), S(0) and Eqs. 

(A3) l 

L!I + 

To find cl1 and Cl2 the second of Eqs. (2.43) 

(A5) 

must be solved. Here the eigenvalue X is given by Eq. (A4), 

B. is given in Eq. (Al) and hence the matrix Bl = B' (0) must 
be found. The computation of Bl is long but straightforward. 

From the definition of B(x) (Eq. (2.31)) it follows that 

or 

F'(O)T(O) +F(O)T'(O) -(S(O)F'(O) + S'(O)F(O)) 

B'(0) = 

I 

(A6 1 
+F(O)V'(O)) S(O)F' (0) + S '(O)F(O) 

where F(x) = Mo(x)/H(x). Using Eq. (A6) in Eq. (A5) and solving 

the latter by inverting the coefficient matrix yields + 
c11 I 1 f 
c12 

= L 
* 

Al 
r 

B* 

+ &A; 

- aB 
* 
2 

(A7) 

where 
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a = (l+~2)H(W , l-' = aH(O)[o:-T(0) -S(O)] 

* 

Al = S(O)F(O)(V'(O)-T'(0)) , B; = T(O)F(O) W'(O)-T'(O)) 

* 
A2 = F'(O)[T(O) +S(O)] + F(O)[T'(O) +S'(O)] 

* 
B2 = F'(O)[V(O) +S(O)] + F(0) [V'(O) +S'(O)] . 

To arrive at the final result (Eqs. (2.44)) the quantities F, 
T, S, V and their derivatives must be evaluated at x = 0. This 
is tedious and the details will not be presented. It should be 
noted that it is easier to do the actual computations by 
rewriting Eq. 
C+ - Cf 

(A7) to obtain expressions for ct2 + ctl and 

12 11 and hence this is the form of the results presented 
in Eqs. (2.44). 
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Appendix B. INNER EQUATIONS FOR VELOCITY AND DENSITY 

In order to derive the inner equations for the acoustic 
density and velocity Eqs. (3.11) could be solved for pl and rl 
in terms of Pl and Ql and the result substituted in Eqs. (3.12) 

and (3.13), or equivalently the expansions (3.9) and the steady 
flow expansions (3.4), (3.5) could be substituted into Eqs. 
(2.4) and coefficients of each power of E are set equal to 
zero. The latter procedure yields for the first of Eqs. (2.4) 

O(E) : rtx + 1-1 ix = 0 

(Bl) 
Ok2): 

. . . . 

Gt + i)iX + r 1’ ix + rix + u u ix = 0 

and for the second of Eqs. (2.4) 

O(E) : rtx + utx = 0 

(B2) 

2aX 
+ [(y-2)r~+mllr~, - (Y+l)ml f21-1 1'- (y-l)rtl = 0 . 

The continuity and momentum equations yield redundant 
equations for the leading order density and velocity. Thus 

the O(s2) equations will be needed to derive two independent 
equations for r r and u t- The redundancy is repeated at O(s2), 

and thus subtraction of the second of Eqs. (Bl) from the 
second of Eqs. (B2) results in a second independent equation 
on the first order quantities. Therefore, the first-order 
inner equations for the perturbation quantities can be taken 
to be the set consisting of the first of Eqs. (Bl) and (B2) 
and the difference between the two O(c2) equations: 

. . 
I-ltt-'it + (lpi) l-llX i +[(y-2)r;f+mllrtX - +GX 

. . 2aX 
- pirix - (y+l)ml 12' r- (y-l)ril = 0 . (B3) 
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APPENDIX B 

Finally, the first equation is used to eliminate rtx from 

Eq. (B3) to give the first-order inner equations in the form 

r:x + prx = 0 , 
(B4) 

ct - Gt + [2p:- (y-l)rt- 2m 2aX - = . 1 1~~ - lx (y+l)ml 124 (y-l)ril 0 

Equations (B4) are the lowest order nonlinear equations of 
motion which govern sound propagation in the vicinity of a 
near-sonic throat. 

A second order equation can be found by forming the second 
order Riemann invariant (Eqs. (3.11)) 

(B5) 

Using the second of Eqs. (Bl) and the relation pt+rt = 0, 
which is implied by Eq. (B4) yields 

ap2 - = & (pi+ri -X$(+2 
ax 

- mlpi) = 0 

and hence P 2 = P,(t). The relations Pl E 0, P2 = P2(t) and 

the second of Eqs. (B4) are equivalent to the equations derived 
in Section IIIB. In fact the second of Eqs. (B4) can be trans- 

formed to Eq. (3.14) by.letting Q, = vi-r:. 
The solution for Eli and rt can be expressed in terms of n 

by use of the relations Ql = 2~1, 1-l; =-ri and Eqs. (3.15). 
This yields 

2 pi = - ri = y+l - [n(X,t) + ml(x) 1 . (B6) 

Using Eq. (3.20) for IT gives the leading order inner solution 

2 +-r - 
r = y+1 [-(ax2 + $2(~))1'2 + 
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where T(X,t) is given implicitly by the characteristic equation 
(3.21). 
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Appendix C. FOURIER EXPANSION OF THE INNER SOLUTION 

In Section IIIC the Fourier series for the outer expan- 
sion of the inner solution was found assuming the Fourier 
expansion of the function e2(~) was known. In this appendix 

the details of finding this expansion of $2[-c(x,t)] will be 
provided. Since G2 is a period function of period ~IT/R in t 
a series in the form 

$2 = cos nnt + DA(x) sin&t 1 (Cl) 
will be sought, with 

2n/R 
Q 2 =- dt . Tr 

I 
@ (T(xlt)) (C2) 

0 

It should be noted that Ci and Di are functions of the outer 
variable x since the outer limit of the inner solution is 
being considered. The expression (C2) for the coefficient 
will now be simplified and written in the form suitable for 
matching by explicitly exhibiting the x dependence implicit 
in Eq. (C2) - Differentiating the characteristic relation 
(Eq. (3.29)) 

t = T + .w In I@(T)] + g(x;s) 
a 

yields 

dt _ 1 + sgn x V 
d-r a1'2 $ . 

(C3) 

(C4) 

The variable of integration in Eq. (C2) is changed from t to 
'c by using Eqs. (C3) and (C4) yielding 
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1 2lT/R 
n =- sgn x Cp' 
1T I [ e2 1+ a1j2 1 0 

COs x-62 
X 

sin n.Q c =+53(x;&) +Fln dT . 

Here the fact that Cp(-c) is periodic with period ~IT/R has 
been used to det:rmine +the limits of integration. Integrating 
the $' term in Cn and Dn by parts yields 

Ci-+ sgn x Di 

I 
2?T/R 

i-2 =- 
7r ~$~(-r) cosnR 

c 
T + g (x; E) + ","1"/2x ln 141 dT 1 (C5) 

and 0 

I 
2-/r/R R =- 7T G2(-r) sinnR 

c 
-r+g(x;c) +Fln /$I 

I 
dr (C6) 

0 

respectively. Multiplying Eq. (C6) by i and adding it to 
Eq. (C5) yields 

Ci--$$2-sgnn Di Di+fisgnx Ci 
1 

= iexp (infig)IA (C7) 

where I + 
n was defined in Eq. (3.32) . is independent 

of x the x dependence of Ci 

Since 1: 
and D i has been explicitly found 

in the right side of Eq. (C7). 
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In order to solve Eqs. (C6) (C7) for the Fourier 
coefficients Cf n and Di the term I 

yd 

n is written as 

Ei+ iH’ = 
n + l 

l7- 

Then after a straightforward calculation the expressions 
(3.31) are found for C' and Df n n' 
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Appendix D. THE CROCCO-TSIEN SOLUTION 

An exact analytical solution of the outer acoustic 
equations (2.25) was discovered by Tsien and applied extensively 
by Crocco to problems of combustion instability in rocket engines 
(Ref. 10). Their solution was for a basic steady flow that 

was subsonic upstream of the throat and supersonic downstream 
of the throat. This solution was generalized in Ref. 6 to 
totally subsonic steady flow. This generalized solution is 
presented here. 

Suppose the Mach number distribution MO(x) of Eq. (2.17) 
is of the form 

-l/2 
MO = (1-I<lxl)[F - 9 (1-K~x~)2] I4 < i 

where K is a constant. Expansion of Eq. (Dl) for small x 
yields 

MO(X) = 1 - K(v;U Ix1 + + (y2- 1)K2x2 + . . . . 

(Dl) 

(D2) 

This is expansion of the form of Eq. (2.17) with 

and 

m20 = 0 2 (Y2 -l)K2 . (D3) 

The area ratio a(x) corresponding to Eq. (Dl) can be deter- 
mined from Eq. (2.13); it is shown in Figure 4 for three 
values of the parameter K over a range 0 < x 2 0.5. Tsien 
and Crocco showed, by introducing a new isdependent variable 
z = (1-~1x1)" into Eqs. (2.25) that these equations were 
equivalent to 

2 
z(l-z) d rOn if3 

dz2 
- 2D+y+l 

drOn -]z - - dz 
[i6(2+2i) 

2(y+l) IrOn = O (D4) 

drOn 
'On 

= [ (y-l+iB)ron - (y+l) (1-Z) ~1 D+iBl-’ (D5) 

55 



APPENDIX D 

where 

f+-(lgL) 
w 

g sgnx (D6) 

Eq- (D4) a hypergeometric equation with complex coefficients 
Ref. 20 and thus its general solution can be written as 

+ 
'On = E&(1-z) 1-RF(-k,-j,2-R;1-z) +EinF(j,k,R;l-z) , (D7) 

where 

R-l 
j=7- +A t k+++ , 

2iB 
R=2+y+l I A = [1+2(Y-1$ B2]1'2 , 

(y+l) 

and F is the standard hypergeometric function of the indicated 
complex arguments. Calculating r; from Eq. (D7) by using the 
well known properties of the hypergeometric function gives 1-1 0 
from Eq. (D5) in the form 

1 
'On = 2+i[3 E?,[(y-l+i6)Fl+ (y+i)jk (1-z) F21 

+Ein [(2y+iB-(y+l)R) (l-z)l-'F3 (D8) 

+ (y;:kjk (1-z) 2-LF4] 
> 

where 

Fl = F(j,k,R;l-z) I F2 = F(j+l;k+l,R+l;l-z) I 

F3 = F(-k,-j,2-R;l-z) , F4 = F(-k+l,-j+l,3-R;l-z) . 

Finally, if rOn in Eq. (D7) is multiplied by exp inQt and 
expanded for small values x (i.e., z-l -f 0) it must be of 
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the form given in Eq. 
f + 

(2.45), which determines E& and Ein in 
terms of Aln and Bin: 

f = (2K)'-1 Aln f + 
Eln and E2n = Bin . (D9) 

If the anechoic boundary condition 

POl(-x .rt) = 6 F (Mo~On+rOn)einSlt = 0 
n=O 

is applied then using Eqs. (Dl), (D7), (D8) and (D9) yields 
Eq- (3.47) namely 

Bin = (~K)'-'(~,(-x,))-~A;~ 

where 

rn he) 

= -[(2+iB)-'[(y-l+iB)Fl+*~~ (1-ze)FJ + MorJxe)] 

x [(2+i8-1)[(2y+i8-(y+l)!L) (1-ze)l-'F3+ ('z:Ljk (l-Ze)2-eF4] 

+ (l-ze)1-%3 
MO (-xe) I 

I (D10) 

and 

z e = [l - KI-x~I]~ . 

In this expression the hypergeometric functions are evaluated 
atz=z e' 

If the anechoic boundary condition 

Qol(xe,t) = 6 y 
n=O 

(MO~On-rOn)einnt = 0 
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is applied then a similar procedure to that given above yields 

+ 
Bin = (2K) '-' (rn (x,1 1 -'Aln 

where Tn(xe) is given by an expression similar to Eq. (DlO) , 
with the following changes: the signs of terms divided by 
l/MO should be changed and all quantities in (DlO) should be 

evaluated at x = xe > 0. 
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FIG. 1. Riemann Invariants in a near 
sonic throat. 
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FIG. 3. Typical steady flow integral curve for 
Mach number distribution. 
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FIG. 12. Acoustic power transmitted upstream as 
curvature of the throat is varied; 
R = 1, N = .6, E = .l. 
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FIG. 13. Percentage distribution of 
total power among harmonics 
for varying Mach number; 
R = 1, a = 1, NO = 0, 
so = -03. 
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FIG. 17. Total power transmitted: R = 1, a = 1, 
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